Atomistic Approach for Nanoscale Devices at the Scaling Limit and Beyond - Valley Splitting in Si
نویسندگان
چکیده
Band-structure effects on channel carrier density in the ultrathin-body end of the ITRS roadmap silicon (100) n-type metal oxide semiconductor field effect transistors (MOSFETs) are assessed here using a semi-empirical nearest-neighbor sp 3 d 5 s à tight-binding model with spin-orbit interaction. The calculations focus on the body thickness range between 10 and 18 atomic layers ($1:5{2:5 nm). At this range, the standard effective mass approach is limited by its inability to capture the conduction band nonparabolicity effects and the subband splitting. The tight-binding simulations show interesting effects of ground-state subband splitting in this thickness range, and as a result of this, the channel charge density was found to fluctuate by as much as 30%. Additionally, it was observed that strict process tolerance is necessary in this thickness range in order to maintain an acceptable threshold voltage variation.
منابع مشابه
Atomistic modeling of metallic nanowires in silicon.
Scanning tunneling microscope (STM) lithography has recently demonstrated the ultimate in device scaling with buried, conducting nanowires just a few atoms wide and the realization of single atom transistors, where a single P atom has been placed inside a transistor architecture with atomic precision accuracy. Despite the dimensions of the critical parts of these devices being defined by a smal...
متن کاملValley splitting in Si quantum dots embedded in SiGe
We examine energy spectra of Si quantum dots embedded in Si0.75Ge0.25 buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley splitting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses 6 nm, valley splitting is found to be 150 eV. Using the u...
متن کاملAtomistic Treatment of Electronic Transport : The Effect of
Submitted for the MAR08 Meeting of The American Physical Society Atomistic Treatment of Electronic Transport: The Effect of Bandstructure1 NEOPHYTOS NEOPHYTOU, ABHIJEET PAUL, GERHARD KLIMECK, Purdue University — The effect of bandstructrue on the electronic transport properties of nanowire devices is investigated using the sp3d5s*-SO 20orbital nearest neighbor tight-binding model with spin-orbi...
متن کاملInvestigation of the electron transport and electrostatics of nanoscale strained Si/Si/Ge heterostructure MOSFETs
This thesis presents work aimed at investigating the possible benefit of strained-Si/SiGe heterostructure MOSFETs designed for nanoscale (sub-50-nm) gate lengths with the aid of device fabrication and electrical measurements combined with computer simulation. MOSFET devices fabricated on bulk-Si material are scaled in order to achieve gains in performance and integration. However, as device dim...
متن کاملGenetic design of enhanced valley splitting towards a spin qubit in silicon
The long spin coherence time and microelectronics compatibility of Si makes it an attractive material for realizing solid-state qubits. Unfortunately, the orbital (valley) degeneracy of the conduction band of bulk Si makes it difficult to isolate individual two-level spin-1/2 states, limiting their development. This degeneracy is lifted within Si quantum wells clad between Ge-Si alloy barrier l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013